Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.864
Filtrar
1.
World J Gastroenterol ; 30(10): 1431-1449, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596485

RESUMO

BACKGROUND: Serotonin receptor 2B (5-HT2B receptor) plays a critical role in many chronic pain conditions. The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea (IBS-D) was investigated in the present study. AIM: To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D. METHODS: Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls. The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores. The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint. Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1 (TRPV1) expression were examined following 5-HT2B receptor antagonist administration. Changes in visceral sensitivity after administration of the TRPV1 antagonist were recorded. RESULTS: Here, we observed greater expression of the 5-HT2B receptor in the colonic mucosa of patients with IBS-D than in that of controls, which was correlated with abdominal pain scores. Intracolonic instillation of acetic acid and wrap restraint induced obvious chronic visceral hypersensitivity and increased fecal weight and fecal water content. Exogenous 5-HT2B receptor agonist administration increased visceral hypersensitivity, which was alleviated by successive administration of a TRPV1 antagonist. IBS-D rats receiving the 5-HT2B receptor antagonist exhibited inhibited visceral hyperalgesia.Moreover, the percentage of 5-HT2B receptor-immunoreactive (IR) cells surrounded by TRPV1-positive cells (5-HT2B receptor I+) and total 5-HT2B receptor IR cells (5-HT2B receptor IT) in IBS-D rats was significantly reduced by the administration of a 5-HT2B receptor antagonist. CONCLUSION: Our finding that increased expression of the 5-HT2B receptor contributes to visceral hyperalgesia by inducing TRPV1 expression in IBS-D patients provides important insights into the potential mechanisms underlying IBS-D-associated visceral hyperalgesia.


Assuntos
Síndrome do Intestino Irritável , Humanos , Ratos , Animais , Síndrome do Intestino Irritável/patologia , Receptor 5-HT2B de Serotonina , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Serotonina/metabolismo , Diarreia/etiologia , Receptores de Serotonina , Dor Abdominal/etiologia , Dor Abdominal/metabolismo , Acetatos
2.
ACS Chem Neurosci ; 15(8): 1619-1634, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573542

RESUMO

Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.


Assuntos
Infarto do Miocárdio , Serotonina , Humanos , Serotonina/metabolismo , Receptores de Serotonina
3.
J Am Chem Soc ; 146(14): 9564-9574, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557024

RESUMO

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.


Assuntos
Corantes Fluorescentes , Serotonina , Animais , Serotonina/metabolismo , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
4.
Drug Dev Res ; 85(2): e22178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528652

RESUMO

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3ß and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3ß phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.


Assuntos
Acetatos , Asma , Ciclopropanos , Lipopolissacarídeos , Quinolinas , Sulfetos , Camundongos , Feminino , Animais , Ovalbumina , Via de Sinalização Wnt , Glicogênio Sintase Quinase 3 beta/metabolismo , Serotonina/metabolismo , Bradicinina/metabolismo , Asma/tratamento farmacológico , Pulmão/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Citocinas/metabolismo
5.
J Ethnopharmacol ; 326: 117992, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38428654

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY: This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS: The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS: The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS: The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.


Assuntos
Medicamentos de Ervas Chinesas , Melatonina , Distúrbios do Início e da Manutenção do Sono , Humanos , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Triptofano , Serotonina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Melatonina/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
6.
Behav Brain Res ; 465: 114972, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38552744

RESUMO

The hippocampal salt-inducible kinase 2 (SIK2)-CREB-regulated transcription co-activator 1 (CRTC1) system has been demonstrated to participate in not only the pathogenesis of depression but also the antidepressant mechanisms of several antidepressant medications including fluoxetine, paroxetine, and mirtazapine. Like fluoxetine, paroxetine is also a widely used selective serotonin (5-HT) reuptake inhibitor (SSRI). Recent studies have indicated that paroxetine also modulates several pharmacological targets other than the 5-HT system. Here, we speculate that paroxetine regulates the hippocampal SIK2-CRTC1 system. Chronic stress models of depression, various behavioral tests, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription PCR, and genetic knockdown were used together in the present study. Our results show that the antidepressant actions of paroxetine in mice models of depression were accompanied by its preventing effects against chronic stress on hippocampal SIK2, CRTC1, and CRTC1-CREB binding. In contrast, genetic knockdown of hippocampal CRTC1 notably abrogated the antidepressant effects of paroxetine in mice. In summary, regulating hippocampal SIK2 and CRTC1 participates in the antidepressant mechanism of paroxetine, extending the knowledge of its pharmacological targets.


Assuntos
Fluoxetina , Paroxetina , Animais , Camundongos , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Hipocampo/metabolismo , Paroxetina/farmacologia , Serotonina/metabolismo
7.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553964

RESUMO

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Assuntos
Depressão , Óleos Voláteis , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
8.
Elife ; 132024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477558

RESUMO

The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Camundongos , Animais , Núcleo Dorsal da Rafe/metabolismo , Serotonina/metabolismo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Frontal
9.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443508

RESUMO

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Assuntos
Receptores Acoplados a Proteínas G , Serotonina , Humanos , Camundongos , Animais , Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Córtex Cerebral/metabolismo
10.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38432144

RESUMO

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Assuntos
Depressão , Serotonina , Humanos , Camundongos , Animais , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/farmacologia , Comportamento Animal , Natação , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
11.
Eur J Pharmacol ; 969: 176466, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431243

RESUMO

The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.


Assuntos
Cocaína , Fluorbenzenos , Metanfetamina/análogos & derivados , Piperidinas , Catinona Sintética , Ratos , Camundongos , Masculino , Animais , Ratos Sprague-Dawley , Serotonina/metabolismo , Cocaína/farmacologia , Relação Dose-Resposta a Droga
12.
PLoS One ; 19(3): e0300340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517879

RESUMO

Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.


Assuntos
Dopamina , Serotonina , Dopamina/metabolismo , Serotonina/metabolismo , Água/metabolismo , Proteínas de Membrana Transportadoras , Aminoácidos , Norepinefrina/metabolismo , Biologia Computacional , Mutação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
13.
Neurobiol Dis ; 193: 106465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460800

RESUMO

Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Humanos , Criança , Camundongos , Animais , Serotonina/metabolismo , Receptor 5-HT1A de Serotonina , Asfixia , Fluoxetina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Receptores de Serotonina , Cognição , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Hipóxia
14.
Methods Mol Biol ; 2761: 181-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427238

RESUMO

Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.


Assuntos
Neoplasias Encefálicas , Serotonina , Humanos , Serotonina/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Inflamação/patologia , Neoplasias Encefálicas/patologia , Microambiente Tumoral
15.
Bioorg Med Chem ; 104: 117698, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552597

RESUMO

Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Camundongos , Animais , Piperazina/farmacologia , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Piperidinas/farmacologia , Piperazinas/química , Receptor 5-HT1A de Serotonina
16.
Psychoneuroendocrinology ; 164: 107006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432042

RESUMO

OBJECTIVES: Research has demonstrated that chronic stress experienced early in life can lead to impairments in memory and learning. These deficits are attributed to an imbalance in the interaction between glucocorticoids, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoid receptors in brain regions responsible for mediating memory, such as the hippocampus. This imbalance can result in detrimental conditions like neuroinflammation. The aim of this study was to assess the impact of sumatriptan, a selective agonist for 5-HT 1B/1D receptors, on fear learning capabilities in a chronic social isolation stress model in mice, with a particular focus on the role of the HPA axis. METHODS: Mice were assigned to two opposing conditions, including social condition (SC) and isolated condition (IC) for a duration of five weeks. All mice underwent passive avoidance test, with their subsequent freezing behavior serving as an indicator of fear retrieval. Mice in the IC group were administered either a vehicle, sumatriptan, GR-127935 (a selective antagonist for 5-HT 1B/1D receptors), or a combination of sumatriptan and GR-127935 during the testing sessions. At the end, all mice were sacrificed and samples of their serum and hippocampus were collected for further analysis. RESULTS: Isolation was found to significantly reduce freezing behavior (p<0.001). An increase in the freezing response among IC mice was observed following the administration of varying doses of sumatriptan, as indicated by a one-way ANOVA analysis (p<0.001). However, the mitigating effects of sumatriptan were reversed upon the administration of GR-127935. An ELISA assay conducted before and after the passive avoidance test revealed no significant change in serum corticosterone levels among SC mice. In contrast, a significant increase was observed among IC mice, suggesting hyper-responsiveness of the HPA axis in isolated animals. This hyper-responsiveness was ameliorated following the administration of sumatriptan. Furthermore, both the sumatriptan and SC groups exhibited a similar trend, showing a significant increase in the expression of hippocampal glucocorticoid receptors following the stress of the passive avoidance test. Lastly, the elevated production of inflammatory cytokines (TNF-α, IL-1ß) observed following social isolation was attenuated in the sumatriptan group. CONCLUSION: Sumatriptan improved fear learning probably through modulation of HPA axis and hippocampus neuroinflammation.


Assuntos
Sistema Hipotálamo-Hipofisário , Sumatriptana , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sumatriptana/farmacologia , Sumatriptana/metabolismo , Receptores de Glucocorticoides/metabolismo , Serotonina/metabolismo , Doenças Neuroinflamatórias , Sistema Hipófise-Suprarrenal/metabolismo , Corticosterona , Estresse Psicológico/metabolismo , Isolamento Social , Medo
17.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
18.
Neurochem Int ; 175: 105720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458538

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.


Assuntos
Ansiolíticos , Doença de Parkinson , Núcleos Septais , Ratos , Animais , Núcleo Dorsal da Rafe/metabolismo , Área Tegmentar Ventral/metabolismo , Serotonina/metabolismo , Núcleos Septais/metabolismo , Oxidopamina/toxicidade , Ansiedade , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Ansiolíticos/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
ACS Chem Neurosci ; 15(7): 1298-1320, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38499042

RESUMO

Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.


Assuntos
Serotonina , Transdução de Sinais , Humanos , Serotonina/metabolismo , Sinapses/metabolismo , Membrana Celular/metabolismo , Lipídeos , Transmissão Sináptica/fisiologia
20.
Int J Biol Macromol ; 264(Pt 1): 130609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437933

RESUMO

5-Hydroxytryptophan (5-HTP), as the precursor of serotonin and melatonin in animals, can regulate mood, sleep, and behavior, which is widely used in pharmaceutical and health products industry. The enzymatic production of 5-hydroxytryptophan (5-HTP) from L-tryptophan (L-Trp) using tryptophan hydroxylase (TPH) show huge potential in application due to its advantages, such as mild reaction conditions, avoidance of protection/deprotection processes, excellent regioselectivity and considerable catalytic efficiency, compared with chemical synthesis and natural extraction. However, the low thermostability of TPH restricted its hydroxylation efficiency toward L-Trp. In this study, we aimed to improve the thermostability of TPH via semi-rational design guided by (folding free energy) ΔΔG fold calculation. After two rounds of evolution, two beneficial mutants M1 (S422V) and M30 (V275L/I412K) were obtained. Thermostability evaluation showed that M1 and M30 possessed 5.66-fold and 6.32-fold half-lives (t1/2) at 37 °C, and 4.2 °C and 6.0 °C higher melting temperature (Tm) than the WT, respectively. The mechanism behind thermostability improvement was elucidated with molecular dynamics simulation. Furthermore, biotransformation of 5-HTP from L-Trp was performed, M1 and M30 displayed 1.80-fold and 2.30-fold than that of WT, respectively. This work provides important insights into the thermostability enhancement of TPH and generate key mutants that could be robust candidates for practical production of 5-HTP.


Assuntos
5-Hidroxitriptofano , Triptofano Hidroxilase , Animais , 5-Hidroxitriptofano/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Triptofano/metabolismo , Serotonina/metabolismo , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA